The 4th ACM SIGSPATIAL International Workshop on AI for Geographic Knowledge Discovery
News
- Thank you all for your participation!
- Workshop registration is open here https://sigspatial2021.sigspatial.org/registration/, Authors please register in order to join our virtual workshop.
- Workshop program is updated.
Mission
Emerging advances from artificial intelligence, hardware accelerators and processing architectures continue to transform societal challenges impacted by geospatial applications. Recent breakthroughs in deep learning have brought forward an automated capability to learn hierarchical representational features from massive and complex data, including text, images, and videos. In tandem, rapid innovations in sensing technologies are collecting geospatial data in even higher resolution and throughput to enable mapping and analysis of the earth’s surface, events and various phenomena in unprecedented detail. Combined, these developments are offering potential for breakthroughs in geographic knowledge discovery to impact better decision making through precise humanitarian mapping, intelligent transport systems, urban expansion analysis, spatial diffusion methods to support epidemiology, climate change induced threats, natural disasters, and monitoring of the earth’s surface.
Following the success of the previous GeoAI workshops at SIGSPATIAL, GeoAI’21 aims to continue bringing together geoscientists, computer scientists, engineers, entrepreneurs, and decision makers from academia, industry, and government to discuss the latest trends, successes, grand challenges, and opportunities in the emerging field of geospatial artificial intelligence to provide actionable intelligence and power new geographic scientific discoveries.
Topics
Example topics include but are not limited to:
- Data integrity, bias and privacy in Earth Sciences;
- Emerging challenges and opportunities with deep fake geography;
- GIScience with artificial intelligence for earth sciences and sustainability;
- Geospatial artificial intelligence applications in public health and agricultural domains;
- Spatial representation learning and deep neural networks for spatio-temporal data;
- Domain knowledge guided methods for spatiotemporal learning and challenges;
- Methods and tools for location intelligence applications;
- Social network data analytics and geographic knowledge graphs;
- Urban growth prediction and planning with machine learning methods;
- Self-supervised and unsupervised deep learning methods spatial and spatio-temporal data;
- Deep learning methods for disaster response and humanitarian applications;
- Human in the loop methods for enhancing integrity in GeoAI applications;
- Tools and methods for (explainable) XGeoAI;
- Learning with multimodal fusion of geographic attributed datasets;
- GeoAI methods for mobility and traffic data analytics;
- GeoAI cyberinfrastructure for Earth sciences;
Workshop Chairs
Dalton Lunga
Oak Ridge National LaboratorySong Gao
University of Wisconsin MadisonYingjie Hu
University at BuffaloBruno Martins
University of LisbonShawn Newsam
University of California, MercedLexie Yang
Oak Ridge National LaboratoryXueqing Deng
University of California, MercedSubmission Details
Paper submission: EXTENDED to September 7, 2021
Acceptance decision: UPDATED! October 6, 2021
Camera ready version: TBD
Workshop date: November 2, 2021
Format
This is a one-day workshop, which includes two keynotes (one for the morning and one for the afternoon respectively) and individual presentations. A paper competition will also be organized for the presented papers. Three submission types will be included in this workshop:
- Full research paper: 8-10 pages
- Short research paper or industry demo paper: 4 pages
- Vision or statement paper: 2 pages
Full research papers should present mature research on a specific problem or topic in the context of AI for geospatial challenges. We also welcome short research articles or industry demonstrations of existing or developing methods, toolkits, and best practices for AI applications in the geospatial domain. A vision for future directions or an overview statement on gaps and challenges for the development of AI technology and their applications in the geospatial domain are also welcome.
Manuscripts should be submitted in PDF format and formatted using the ACM camera-ready templates available at http://www.acm.org/publications/proceedings-template. All submitted papers will be peer reviewed to ensure the quality and the clarity of the presented research work. Submissions will be single-blind — i.e., the names affiliations of the authors should be listed in the submitted version.
Papers should be submitted at: https://easychair.org/conferences/?conf=geoai21
Program Committee
Pete Atkinson, Atkinson, Lancaster University, UK
Orhun Aydin, Esri Inc., USA
Booma Sowkarthiga Balasubramani, Microsoft, USA
Dengfeng Chai, Zhejiang University, China
Yao-Yi Chiang, University of Southern California, USA
Xiao Huang, University of Arkansas
Zhe Jiang, University of Alabama
Kuldeep Kurte, Oak Ridge National Laboratory, USA
Wenwen Li, Arizona State University, USA
Xiaojiang Li, Temple University, USA
Yanhua Li, Worcester Polytechnic Institute, USA
Gengchen Mai, Stanford University, USA
Claudio Persello, University of Twente, Netherlands
Devis Tuia, EPFL, Switzerland
Martin Werner, Technical University of Munich, Germany
Yiqun Xie, University of Maryland, College Park, USA
Fan Zhang, MIT Senseable City Lab, USA
Xun Zhou, University of Iowa, USA
Di Zhu, Peking University, China
Lei Zou, Texas A&M University, USA