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Sustainable Development Goals (SDGs)

● Data-driven framework defined by the United Nations

● Set of seventeen goals representing actions to reach 
peace and prosperity for all people by 2030 
→ Social, economic, and environmental challenges

● 169 targets and 232 indicators to measure, monitor, and 
report the progress

“If you can’t measure it, you can’t manage it!”

⇒ Need for objective, accurate and trustworthy information. 
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SDGs and EO

● Continuous temporal information over the globe
● Data at multiple scales
● Monitors the state of natural ecosystems, natural 

resources, oceans, coasts, land, built infrastructure 
and their change over time

● Spatially and temporally consistent
● Complementary with traditional statistical methods

(e.g. household surveys and administrative data)

C. Persello et al., "Deep Learning and Earth Observation to Support the Sustainable Development Goals: Current approaches, open challenges, 
and future opportunities," in IEEE Geoscience and Remote Sensing Magazine, vol. 10, no. 2, pp. 172-200, June 2022
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SDGs and EO

● Continuous temporal information over the globe
● Data at multiple scales
● Monitors the state of natural ecosystems, natural 

resources, oceans, coasts, land, built infrastructure 
and their change over time

● Spatially and temporally consistent
● Complementary with traditional statistical methods

(e.g. household surveys and administrative data)

● 34 SDG indicators across 29 targets and 11 goals 
can be informed with EO data

● Effective comparison among different countries
● Reduce the cost of monitoring SDG targets

C. Persello et al., "Deep Learning and Earth Observation to Support the Sustainable Development Goals: Current approaches, open challenges, 
and future opportunities," in IEEE Geoscience and Remote Sensing Magazine, vol. 10, no. 2, pp. 172-200, June 2022
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SDGs and EO

https://earthobservatory.nasa.gov/wo
rld-of-change/Shanghai

https://earthobservatory.nasa.gov/wo
rld-of-change/Deforestation/

https://earthobservatory.nasa.gov/w
orld-of-change/AralSea/

Monitoring of extreme events and quantifying their socioeconomic impacts

Urbanization
Shanghai 1984-2019

Deforestation
Amazon 2000-2012

Drought
Aral Sea 2000-2018
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SDGs and Floods

2.4.1: Adaptation to climate change, extreme weather, drought, flooding and 
other disasters

11.b.2: Disaster risk reduction
11.5.1: Reduced number of deaths related to disasters
11.5.3: Mitigate disaster damage to infrastructure

15.3.1: Maps of deserts and degraded land, prediction of drought and floods
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Why floods?

● Danger to human lives

● Damage to buildings and infrastructure

● Costs for cleanup and rebuilding

● Power outages

● Disrupts transportation

● Landslides and erosion of arable land

● Environmental hazards
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Why floods?

● Most common disaster
● Affect more people than all other 

natural disasters combined. 

● 223 of 432 catastrophic events in 
2021 were floods¹

● 163 of 357 annual catastrophic 
events on average in 2000-2020

● 2.23 million km² flooded and 
255-290 million people affected in 
the last 15 years

● $80 billion economic loss from 
floods in 2021²

Global disaster losses

Insured vs. Uninsured (billions)

1 https://reliefweb.int/report/world/2021-disasters-numbers
2 Source: The World Bank, Swiss Re Institute
3 Figure with courtesy S.Chakrabarti, Cloud2Street (Source: SwissRe Institute) 

https://reliefweb.int/report/world/2021-disasters-numbers
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Satellites and Sensors
● Global Precipitation Measurement (GPM) Mission
● Soil Moisture Active Passive (SMAP)
● Terrain Data From Shuttle Radar Topography Mission (SRTM)
● Terra / Aqua and MODIS Sensor
● Suomi National Polar Partnership (SNPP); Visible Infrared Imaging Radiometer Suite (VIIRS)

○ 1-2 observations per day
○ 22 spectral bands
○ Spatial resolution: 375 – 750 m

Power outages in Puerto Rico after Hurricane Fiona mid-September 2022 
(Imagery courtesy of W. Straka, SSEC/CIMSS)
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Satellites and Sensors
● Global Precipitation Measurement (GPM) Mission
● Soil Moisture Active Passive (SMAP)
● Terrain Data From Shuttle Radar Topography Mission (SRTM)
● Terra / Aqua and MODIS Sensor
● Suomi National Polar Partnership
● Landsat 1-9

One of the first flood events captured 
from space (by Landsat 1 aka ERTS-1): 
→ Mississippi floods, March / May 1973 

Deutsch, M. and Ruggles, F. (1974), “Optical data 
processing and projected applications of the ERTS-1 

imagery covering the 1973 Mississippi river valley floods”, 
JAWRA Journal of the American Water Resources 

Association, 10: 1023-1039



> ACM SIGSPATIAL International Workshop on AI for Geographic Knowledge Discovery • The Remote Sensing of Floods, R.Hänsch > November 13, 2023DLR.de  •  Chart 11

Satellites and Sensors
● Global Precipitation Measurement (GPM) Mission
● Soil Moisture Active Passive (SMAP)
● Terrain Data From Shuttle Radar Topography Mission (SRTM)
● Terra / Aqua and MODIS Sensor
● Suomi National Polar Partnership (SNPP); Visible Infrared Imaging Radiometer Suite (VIIRS)
● Landsat 1-9
● Other optical satellites (e.g WorldView)

https://www.maxar.com/open-data
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Satellites and Sensors
● Global Precipitation Measurement (GPM) Mission
● Soil Moisture Active Passive (SMAP)
● Terrain Data From Shuttle Radar Topography Mission (SRTM)
● Terra / Aqua and MODIS Sensor
● Suomi National Polar Partnership (SNPP); Visible Infrared Imaging Radiometer Suite (VIIRS)
● Landsat 1-9
● Other optical satellites
● SAR (Sentinel 1, TSX/TDX, RadarSAT,

Cosmo-SkyMed, Capella Space, Iceye, …)
○ Daylight independent
○ Penetrate clouds
○ Sensitive for surface roughness and 

permittivity (moisture)

2021 New South Wales Floods, Australia, https://www.capellaspace.com/gallery/
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Services

● MODIS NRT Global Flood Mapping and NASA Worldview
● Dartmouth Flood Observatory (DFO River Watch)
● HYDrologic Remote Sensing Analysis for Floods (HYDRAFloods)
● European Flood Awareness Systems (EFAS)
● Global Flood Awareness System (GloFAS)

○ Operational global hydrological forecasting and monitoring
○ Acquisition of satellite images can be pre-tasked
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Services

● Global Flood Monitoring
○ Operational, near real-time service
○ Continuous, global, automated satellite-based monitoring
○ All incoming Sentinel-1 images are analysed by 3 flood detection algorithms
○ Provides

■ Observed flood extent
■ Observed water extent
■ Reference water mask
■ Exclusion mask
■ Uncertainty values
■ Affected population
■ Affected land cover
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Services (Industry): Floodbase (formerly Cloud to Street)

Satellite Image Flood Map

https://www.floodbase.com/

Figure courtesy S.Chakrabarti, Cloud2Street

https://www.floodbase.com/
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Datasets

Flood Extent Detection
● More than 30k Sentinel 1 image patches (256 x 256)
● https://nasa-impact.github.io/etci2021/

Sen12-FLOOD
● Sentinel 1&2 images
● 412 time series (~9 optical, ~14 SAR images)
● Flood event in ~45\% of the cases
● Flood label only on image level

https://nasa-impact.github.io/etci2021/
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Datasets: SpaceNet

● Founded by In-Q-Tel Labs’ CosmiQ Works and Maxar Technologies in August 2016
● Partners: Maxar, IEEE GRSS, AWS, Topcoder, and Oak Ridge National Laboratory 
● Web: www.spacenet.ai Twitter: @Spacenet_AI
● AWS: registry.opendata.aws/spacenet

http://www.spacenet.ai
http://registry.opendata.aws/spacenet
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SpaceNet 8 – Motivation 

SpaceNet 1
11/2016 – 1/2017

SpaceNet 2
6/2017 – 8/2017

SpaceNet 3
11/2017 – 2/2018

SpaceNet 4
10/2018 – 1/2019

Building 
Footprint 
Detection

Building 
Footprint 
Detection

Road Extraction 
& Routing

Building 
Footprint 
Detection 

SpaceNet 5
9/2019 – 10/2019

Road Extraction, 
Routing & Times

SpaceNet 6
3/2020 – 5/2020

Building 
Footprint 
Detection

SpaceNet 7
8/2020 – 10/2020

Building Footprint 
Detection & 

Tracking
(Time- Series)

Multimodal Data
EO or SAR Data

Moderate Resolution 
EO Data

EO DataEO Off-Nadir DataEO DataEO DataEO Data

© Maxar © Maxar © Maxar© Maxar © Maxar, Capella Space© Maxar © Planet

Build upon previous challenges …
                           … but go beyond pure foundation mapping
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SpaceNet 8 – Task

• Detect the impact of floods on buildings and roads
– Accurately map pre-event infrastructure and identify 

post-event flood attributes
– New dataset released for three AOIs
– Featured in the CVPR 2022 EarthVision Workshop

• Challenge hosted on Topcoder
– $50,000 in total prizes
– Awards to top 5 overall teams
– Plus, top undergrad & grad academic teams

Germany AOI
GeoEye-1 | July 18, 2021

© Maxar
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SpaceNet 8 – Louisiana AOI

© Maxar © Maxar
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SpaceNet 8 – Challenges: High Level of Detail

© Maxar
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SpaceNet 8 – Challenges: Significant Content Change

© Maxar
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SpaceNet 8 – Challenges: Significant Content Change

© Maxar
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SpaceNet 8 – Challenges: Significant Appearance Change

© Maxar
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SpaceNet 8 – Challenges: Significant Appearance Change

© Maxar
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SpaceNet 8 – Challenges: Cloud Cover

© Maxar

© Maxar © Maxar

© Maxar
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SpaceNet 8 – Baseline Algorithm
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SpaceNet 8 – Baseline Algorithm
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SpaceNet 8 – Baseline Algorithm
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SpaceNet 8 – Evaluation

• Scoring is designed to be relevant for 
real-world applications

• Metrics:
– Intersection over Union (IoU) for 

building footprints
– Average Path Length Similarity 

(APLS) for roads

• Submitted solutions are assigned a 
single score composed of building 
damage and road networks

Pre-event Post-event

© Maxar © Maxar
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SpaceNet 8 – Results

● Run from July 12 to Aug 23 (292 registrations)

● Dominating factors were
○ data augmentation,
○ pre-training (incl. previous SN data),
○ neural network ensembles,
○ and U-Nets.

Pre-event Post-event

© Maxar © Maxar
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Uncertainty Quantification and Explainability

Model

Query Sample

Uncertainty 
Quantification

Explainable
Machine Learning

Visualization and 
Quantification

Visualization and 
Quantification

Region of Interest

Reference Values

W2

Optional input

Optional input

W2 - How certain and why? Development and application-focused evaluation of a unified framework for uncertainty quantification and explainable AI
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Uncertainty Quantification

SAR Images Reference Prediction Softmax MC Dropout Weight Noise TT Data Augm. St. Ensemble

W2 - How certain and why? Development and application-focused evaluation of a unified framework for uncertainty quantification and explainable AI / J.Ludwig



> ACM SIGSPATIAL International Workshop on AI for Geographic Knowledge Discovery • The Remote Sensing of Floods, R.Hänsch > November 13, 2023DLR.de  •  Chart 34

Explainability

W2 - How certain and why? Development and application-focused evaluation of a unified framework for uncertainty quantification and explainable AI / A.Schlegel
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AI Powered Flood Mapathon

● Eight different flood events with pre- and post-event (optical) imagery

www.grss-ieee.org/community/technical-committees/ai-powered-flood-mapathon/
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AI Powered Flood Mapathon

● Eight different flood events 
with pre- and post-event (optical) imagery

● Crowd-based ranking scheme

www.grss-ieee.org/community/technical-committees/ai-powered-flood-mapathon/
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AI Powered Flood Mapathon

● Eight different flood events 
with pre- and post-event (optical) imagery

● Crowd-based ranking scheme

● October 16, 2023 – January 15, 2024

www.grss-ieee.org/community/technical-committees/ai-powered-flood-mapathon/
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AI Powered Flood Mapathon

● Eight different flood events 
with pre- and post-event (optical) imagery

● Crowd-based ranking scheme

● October 16, 2023 – January 15, 2024

● Best 200 participants get awarded

www.grss-ieee.org/community/technical-committees/ai-powered-flood-mapathon/
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Summary

● Floods are one of the most common and severe disasters
● Cause loss of life, destruction of infrastructure, damage to buildings, environmental hazards
● Frequency and severity can only be expected to increase in the future
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Summary

● Floods are one of the most common and severe disasters
● Cause loss of life, destruction of infrastructure, damage to buildings, environmental hazards
● Frequency and severity can only be expected to increase in the future

● Detection, now- and forecasting, monitoring, response, damage assessment, etc. require a 
multitude of data

● Remote sensing plays a pivotal role
● Several public and private flood services heavily rely on EO data
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Summary

● Floods are one of the most common and severe disasters
● Cause loss of life, destruction of infrastructure, damage to buildings, environmental hazards
● Frequency and severity can only be expected to increase in the future

● Detection, now- and forecasting, monitoring, response, damage assessment, etc. require a 
multitude of data

● Remote sensing plays a pivotal role
● Several public and private flood services heavily rely on EO data

● Automatic analysis of RS imagery has not yet reached its potential
○ Fast (includes domain adaptation and cross-modal learning)
○ Reliable and accurate
○ Trustable and interpretable
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Ahr valley, Germany – 2021 – Flooding – Road segmentation
Credits: ZKI, DLR

Questions?


